We use cookies and similar tools to enhance your experience, provide our services, deliver relevant advertising, and make improvements. Approved third parties also use these tools to help us deliver advertising and provide certain site features.
Essential cookies are necessary to provide our site and services and cannot be deactivated. They are usually set in response to your actions on the site, such as setting your privacy preferences, signing in, or filling in forms.
Performance cookies provide anonymous statistics about how customers navigate our site so we can improve site experience and performance. Approved third parties may perform analytics on our behalf, but they cannot use the data for their own purposes.
Functional cookies help us provide useful site features, remember your preferences, and display relevant content. Approved third parties may set these cookies to provide certain site features. If you do not allow these cookies, then some or all of these services may not function properly.
Advertising cookies may be set through our site by us or our advertising partners and help us deliver relevant marketing content. If you do not allow these cookies, you will experience less relevant advertising.
Blocking some types of cookies may impact your experience of our sites. You may review and change your choices at any time by clicking Cookie preferences in the footer of this site. We and selected third-parties use cookies or similar technologies as specified in the AWS Cookie Notice.
stop_training_job
(**kwargs)¶Stops a training job. To stop a job, SageMaker sends the algorithm the SIGTERM
signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.
When it receives a StopTrainingJob
request, SageMaker changes the status of the job to Stopping
. After SageMaker stops the job, it sets the status to Stopped
.
See also: AWS API Documentation
Request Syntax
response = client.stop_training_job(
TrainingJobName='string'
)
[REQUIRED]
The name of the training job to stop.
Exceptions
SageMaker.Client.exceptions.ResourceNotFound